Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(42): 15945-15955, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37823561

RESUMO

Air quality in China has continuously improved during the Three-Year Action Plan (2018-2020); however, the changes in aerosol composition, properties, and sources in Beijing summer remain poorly understood. Here, we conducted real-time measurements of aerosol composition in five summers from 2018 to 2022 along with WRF-Community Multiscale Air Quality simulations to characterize the changes in aerosol chemistry and the roles of meteorology and emission reductions. Largely different from winter, secondary inorganic aerosol and photochemical-related secondary organic aerosol (SOA) showed significant decreases by 55-67% in summer, and the most decreases occurred in 2021. Comparatively, the decreases in the primary aerosol species and gaseous precursors were comparably small. While decreased atmospheric oxidation capacity as indicated by ozone changes played an important role in changing SOA composition, the large decrease in aerosol liquid water and small increase in particle acidity were critical for nitrate changes by decreasing gas-particle partitioning substantially (∼28%). Analysis of meteorological influences demonstrated clear and similar transitions in aerosol composition and formation mechanisms at a relative humidity of 50-60% in five summers. Model simulations revealed that emission controls played the decisive role in reducing sulfate, primary OA, and anthropogenic SOA during the Three-Year Action Plan, while meteorology affected more nitrate and biogenic SOA.


Assuntos
Poluentes Atmosféricos , Pequim , Poluentes Atmosféricos/análise , Material Particulado/análise , Nitratos , Monitoramento Ambiental , Aerossóis/análise
2.
Environ Pollut ; 289: 117839, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34340179

RESUMO

Indigenous microbial consortia are closely associated with soil inherent components including nutrients and minerals. Although indigenous microbial consortia present great prospects for bioremediation of vanadate [V(V)] contaminated soil, influences of some key components, such as available phosphorus (AP), on V(V) biodetoxification are poorly understood. In this study, surface soils sampled from five representative vanadium smelter sites were employed as inocula without pretreatment. V(V) removal efficiency ranged from 81.7 ± 1.4% to 99.5 ± 0.2% in batch experiment, and the maximum V(V) removal rates were positively correlated with AP contents. Long-term V(V) removal was achieved under fluctuant hydrodynamic and hydrochemical conditions in column experiment. Geobacter and Bacillus, which were found in both original soils and bioreactors, catalytically reduced V(V) to insoluble tetravalent vanadium. Phosphate-solubilizing bacterium affiliated to Gemmatimonadaceae were also identified abundantly. Microbial functional characterization indicated the enrichment of phosphate ABC transporter, which could accelerate V(V) transfer into intercellular space for efficient reduction due to the structural similarity of V(V) and phosphate. This study reveals the critical role of AP in microbial V(V) decontamination and provides promising strategy for in situ bioremediation of V(V) polluted soil.


Assuntos
Poluentes do Solo , Solo , Biodegradação Ambiental , Descontaminação , Consórcios Microbianos , Fósforo , Microbiologia do Solo , Poluentes do Solo/análise , Vanadatos
3.
Yao Xue Xue Bao ; 44(7): 764-7, 2009 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-19806917

RESUMO

To study chemical constituents of Polygonatum odoratum (Mill.) Druce, the compounds were separated with column chromatography and HPLC. On the basis of physicochemical properties and spectral data, their structures were confirmed. Nine compounds were isolated and identified as 5,7-dihydroxy-6-methoxyl-8-methyl-3-(2',4'-dihydroxybenzyl)chroman-4-one (1), 5,7-dihydroxy-6-methyl-3-(2',4'-dihydroxybenzyl)chroman-4-one (2), 5,7-dihydroxy-6-methoxyl-8-methyl-3-(4'-methoxybenzyl)chroman-4-one (3), disporopsin (4), chrysoeriol (5), 5,4'-dihydroxy-7-methoxy-6-methylflavone (6), N-trans-feruloyltyramine (7), N-trans-feruloyloctopamine (8), and (+)-syringaresinol (9). Compounds 1-3 are new homoisoflavanones. Compounds 4-9 are isolated from this plant for the first time.


Assuntos
Isoflavonas/isolamento & purificação , Polygonatum/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...